### **SIEMENS**



## 世纪楼宇



## 济南工达捷能科技发展有限公司

西门子暖通空调产品 使用手册



济南工达捷能科技发展有限公司

地 址:济南高新技术开发区,环保科技园B座中2008-2016室

联系人: 杨忠祥

TEL: 0531-67807177\$\$810 FAX: 0531-67809899 M: 13853113058

网址: www.wenkongfa.com 邮箱: YZX1117@yahoo.com.cn

SIEMENS 4440

# Three-port valves with flange, PN16

VXF41...



Three-port valves with flange, PN16

- Can be used as mixing or diverting valves
- Grey cast iron GG-25
- DN15...150 mm
- k<sub>vs</sub> 1.9...300 m<sup>3</sup>/h
- Stroke 20 or 40 mm
- Can be equipped with actuators SQX..., SKD..., SKB... and SKC...

Use

In district heating, heating, ventilating, and air conditioning systems as a control valve for "mixing" or "diverting" function.

For open and closed circuits.

Media

Standard versions with standard stem sealing gland for:

|                              | • •         |
|------------------------------|-------------|
| Cooling water                |             |
| Chilled water                |             |
| Low temperature hot water    | −25 +130 °C |
| High temperature hot water   |             |
| Water with anti-freeze 1) 2) |             |
| Brine 1) 2)                  |             |

Special versions with special stem sealing gland for:

| High temperature hot water | 130 180 °C |
|----------------------------|------------|
| Thermo oils                |            |

- 1) Media below 0 °C: ASZ6.5 stem heating element required to prevent freezing of the valve stem in the sealing gland
- 2) Water with anti-freeze and brine: up to max. -10 °C as per DIN 3158 (stress case I) or up to -25 °C as per DIN 3158 (stress case II)

#### Type summary

#### Standard version

| Туре                   | DN    | k <sub>vs</sub>     | S <sub>v</sub> | $\Delta p_{vmax}$ |                   |
|------------------------|-------|---------------------|----------------|-------------------|-------------------|
|                        |       |                     |                | mixing            | diverting         |
|                        | [mm]  | [m <sup>3</sup> /h] |                | kPa               | kPa               |
| VXF41.14 1)            | 15/10 | 1,9                 |                |                   |                   |
| VXF41.15 <sup>1)</sup> | 15    | 3                   | > 50           |                   |                   |
| VXF41.24 <sup>1)</sup> | 25/20 | 5                   |                |                   |                   |
| VXF41.25 <sup>1)</sup> | 25    | 7,5                 | >100           | 800               | 200 <sup>2)</sup> |
| VXF41.39 1)            | 40/32 | 12                  | >50            |                   |                   |
| VXF41.40 <sup>1)</sup> | 40    | 19                  | > 100          |                   |                   |
| VXF41.49 <sup>1)</sup> | 50/40 | 19                  | > 50           |                   |                   |
| VXF41.50 <sup>1)</sup> | 50    | 31                  | > 100          |                   |                   |
| VXF41.65               | 65    | 49                  |                | 500               |                   |
| VXF41.80               | 80    | 78                  |                | 350               |                   |
| VXF41.90               | 100   | 124                 | >100           | 250               | 150               |
| VXF41.91               | 125   | 200                 |                | 175               | 100               |
| VXF41.92               | 150   | 300                 |                | 100               | 70                |

#### Special versions with type suffix 4

| For media and temperatures |            | Example:          |
|----------------------------|------------|-------------------|
| High temperature hot water | 130 180 °C | VXF41.50 <b>4</b> |
| Thermo oils                |            |                   |

<sup>1)</sup> With tight bypass (actuator SQX...)

2) If noise is permitted, the same values apply as for mixing

DN = Nominal diameter

 $k_{vs}$  = Nominal flow value as per VDI 2173

 $S_v$  = Rangeability as per VDI 2173

Max. permissible differential pressure across the control path (II-I = mixing or I-II = diverting) of the valve valid for entire stroke range

#### **Accessories**

#### Electric stem heating element, AC 24 V, required for media below 0 °C: ASZ6.5

 $\Delta p_{vmax.} =$ 

#### Ordering

When ordering, please indicate type reference and type suffix (where required).

Example: VXF41.50

**Delivery** 

Both the valve and the actuator are packed and supplied separately.

The valves are supplied without counter-flanges and without flange gaskets.

## Equipment combinations

| Valves   |                  | Actuators 1)         |                   |        |                         |        |                   |        |           |
|----------|------------------|----------------------|-------------------|--------|-------------------------|--------|-------------------|--------|-----------|
|          |                  | SQX <sup>2) 3)</sup> |                   | SKD 2) |                         | SKB    |                   | SKC    |           |
|          | H <sub>100</sub> | mixing               | diverting         | mixing | diverting               | mixing | diverting         | mixing | diverting |
|          | [mm]             |                      |                   |        | $\Delta p_{\text{max}}$ | [kPa]  |                   |        |           |
| VXF41.14 |                  |                      |                   |        |                         |        |                   |        |           |
| VXF41.15 |                  | 800                  | 200 <sup>4)</sup> | 800    | 200 <sup>4)</sup>       |        |                   |        |           |
| VXF41.24 |                  |                      |                   |        |                         |        |                   |        |           |
| VXF41.25 | 20               |                      |                   |        |                         | 800    | 200 <sup>4)</sup> |        |           |
| VXF41.39 |                  | 500                  | 150               | 750    | 150                     |        |                   |        |           |
| VXF41.40 |                  |                      |                   |        |                         |        |                   |        |           |
| VXF41.49 |                  | 350                  | 100               | 500    | 100                     |        |                   |        |           |
| VXF41.50 |                  |                      |                   |        |                         |        |                   |        |           |
| VXF41.65 |                  |                      |                   |        |                         |        |                   | 500    | 200 4)    |
| VXF41.80 |                  |                      |                   |        |                         |        |                   | 350    |           |
| VXF41.90 | 40               |                      |                   |        |                         |        |                   | 250    | 150       |
| VXF41.91 |                  |                      |                   |        |                         |        |                   | 175    | 100       |
| VXF41.92 |                  |                      |                   |        |                         |        |                   | 100    | 70        |
| Data sh  | eet              | 45                   | 4554 4561 4564    |        |                         |        |                   |        |           |

<sup>1)</sup> Actuators available for delivery: • AC 24 V / AC 230 V with 3-position signal

 $H_{100}$  = 100% stroke of the valve and the actuator

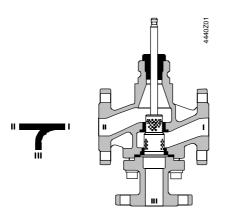
 $\Delta p_{max}$  = Max. permissible differential pressure across the control path (II-I = mixing or I-II = diverting) of the valve across the entire actuating range of the motorized valve

#### Pneumatic actuators



Pneumatic actuators are available on request from your local office.

Application is possible only if the VXF41... is used as a mixing valve.


<sup>•</sup> AC 24 V with proportional pos. signal DC 0...10 V or DC 4...20 mA

<sup>2)</sup> Usable up to max. medium temperature of 140 °C

<sup>3)</sup> The  $\Delta p_{max}$  and  $\Delta p$  values are valid for the new SQX32... / SQX82... and SQX62 actuators; deliverable from January 1999

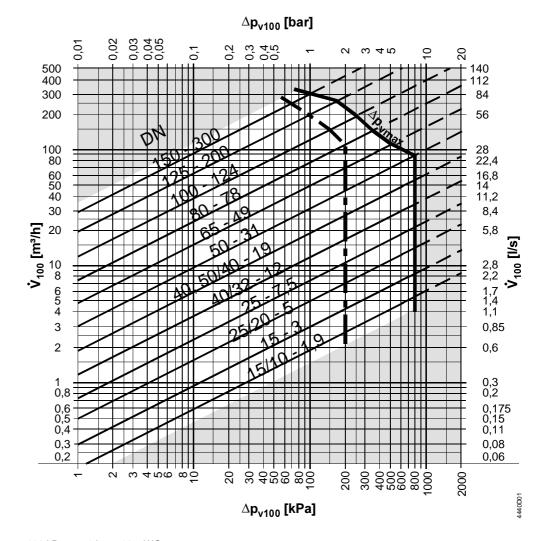
<sup>4)</sup> If noise is permitted, the same values apply as for mixing

#### Mechanical design Valve cross-section



Depending on the nominal size, a guided perforated or slot plug is used that is directly connected to the valve stem.

DN15...50 with tight bypass when the SQX... actuator is used.


The seats are attached to the valve body with the aid of special gland material.

#### **Disposal**

The various material types used require that you disassemble the unit and sort the components prior to disposal.

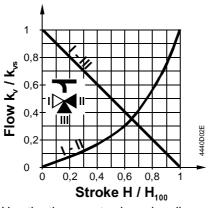
#### Sizing

Sizing diagram



 $100 \text{ kPa} = 1 \text{ bar} \approx 10 \text{ mWG}$ 

 $1 \text{ m}^3/\text{h} = 0.278 \text{ kg/s water at } 20 \text{ °C}$ 


= Δp<sub>vmax.</sub> = Max. permissible differential pressure across the **mixing valve's** II-I **control path** (actuator) valid for the entire stroke range

= = Δp<sub>vmax.</sub> = Max. permissible differential pressure across the **diverting valve's** I-II **control path** (actuator) valid for the entire stroke range

 $\Delta p_{v100}$  = Pressure difference across the fully opened valve (actuator) across the control path (II-I = mixing or I-II = diverting) at flow  $\dot{V}_{100}$ 

 $\dot{V}_{100}$  = Flow in m<sup>3</sup>/h

#### Valve flow characteristic



Use the three-port valve primarily as a mixing valve

Valve flow characteristic in the

through-port

0... 30 %: linear

30...100 %:  $n_{gl} = 3$  as per VDI / VDE 2173

Bypass

0...100 %: linear

Mixing: Flow from port II and port III

to port I


Diverting: Flow from port I

to port II and port III

Port I = constant flow Port II = variable flow

Port III = bypass (variable flow)

## Working pressure and temperature



Working pressure staged as per ISO 7268 and EN 1333 at operating temperatures of  $-25 \dots +180$  °C as per DIN 4747 and DIN 3158.

#### Note Engineering

Water quality requirements as per VDI 2035.

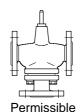
⚠

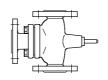
**In open circuits**, there is a risk of valve plug seizing caused by scale deposits. Thus, use only the most powerful actuators SKB... or SKC... for these applications. Additionally, periodic actuation (twice or three times per week) must be planned.

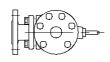
Always use a strainer upstream of the valve.

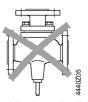
We generally recommend that you install a **strainer even with closed circuits** to increase the valve's functional safety.




For media below 0 °C, use the electric ASZ6.5 stem heating element to prevent the valve stem from freezing in the sealing gland. For safety reasons, the stem heating element has been designed for AC 24 V / 30 W operating voltage.


#### Mounting


Both valve and actuator can easily be assembled at the mounting location. Neither special tools nor adjustments are required.


The valve is supplied with mounting instructions.

Mounting positions









Not permissible

When mounting, pay attention to the valve's flow direction symbol:

Mixing from II / III to I

Diverting from I to II / III





#### Commissioning

Commission the valve only if the actuator has been mounted correctly.

Through-port opens, bypass closes Stem retracts: Stem extends: Through-port closes, bypass opens

#### Service

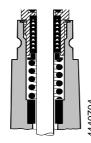


For actuator service work: Turn off the pump and the operating voltage, close the shutoff valves, depressurize the pipes and allow them to cool down. Disconnect the electrical connections, where required, from the terminals. Re-commission the valve only if the actuator has been mounted correctly.

#### Stem sealing gland

The glands can be exchanged without removing the valve, provided the pipes are depressurized and cooled off and the stem surface is unharmed. If the stem is damaged in the gland range, replace the entire stem-plug-unit. Contact your local office or branch.

#### Spare parts


Standard version



Replacement for EPDM-O-ring sealing gland, including flat seal made from copper, for cooling water, chilled water, low temperature hot water, high temperature hot water, and brine -25 ... +130 °C

For VXF41... DN15...40 4 284 8806 0 (Stem dia. 10 mm) For VXF41... DN50 ... 150 (Stem dia. 14 mm) 4 679 5629 0

#### Special version



Replacement for PTFE sealing gland, including flat seal made from copper, for high temperature hot water, saturated steam, hot steam, and thermo oils 130... 180 °C

For VXF41... 4 DN15...40 (Stem dia. 10 mm) 4 284 8829 0 For VXF41... 4 DN50 ... 150 (Stem dia. 14 mm) 4 679 5630 0

#### Warrantv

#### The use of third-party actuators expressly voids any warranty claims.

The technical data  $\Delta p_{max}$ ,  $\Delta p_s$ , leakage rate, noise level and life apply only when used together with the Landis & Staefa actuators as listed in "Type summary".

#### **Technical data Function data**

PN class

PN16

linear

Valve flow characteristic

Through-port

0 ... 30 %

30 ... 100 %

 $n_{ql} = 3$  as per VDI / VDE 2173

Bypass

0... 100%

Leakage rate Through-port

**Bypass** 

DN15... 50 with SQX... actuator

DN15... 150 with actuators

SKD..., SKB... and SKC...

0.5...2% of k<sub>vs</sub> value

Permissible pressure

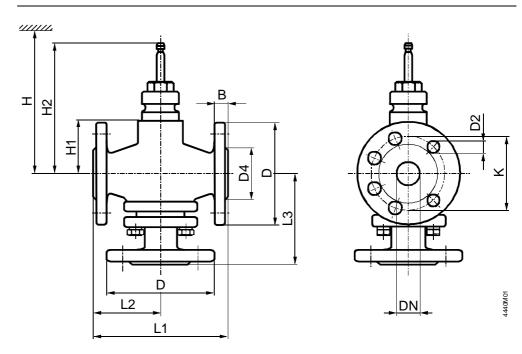
Working pressure

1600 kPa (16 bar), ISO 7268 / EN 1333 DIN 4747 / DIN 3158 in the range of

 $0 \ ... \ 0.02 \ \%$  of  $k_{vs}$  value, VDI / VDE 2173

 $0 \dots 0.02 \ \%$  of  $k_{vs}$  value, VDI / VDE 2173

-25 ... +180 °C


ISO 7005 Flange connections

Stroke

- DN15 ... 50 20 mm - DN65 ... 150 40 mm Valve body Seat, plug, and stem Sealing gland Standard version Special version Gland materials GG-25 as per DIN EN 1561 stainless steel

brass stainless steel EPDM-O-rings, PTFE sleeves

#### **Dimensions**



| DN   | В  | D    | D2      | D4   | H1  | H2    | K   | L1  | L2  | L3  | Weight |
|------|----|------|---------|------|-----|-------|-----|-----|-----|-----|--------|
| [mm] |    | dia. | dia.    | dia. |     |       |     |     |     |     | [kg]   |
| 15   | 14 | 95   | 14 (4x) | 46   | 64  | 160.5 | 65  | 130 | 65  | 114 | 4.9    |
| 25   | 16 | 115  |         | 65   | 64  | 160.5 | 85  | 160 | 80  | 118 | 6.8    |
| 40   | 18 | 150  |         | 84   | 57  | 153.5 | 110 | 200 | 100 | 140 | 11.7   |
| 50   | 20 | 165  | 19 (4x) | 99   | 96  | 192.5 | 125 | 230 | 115 | 145 | 19     |
| 65   | 20 | 185  |         | 118  | 114 | 230.5 | 145 | 290 | 145 | 180 | 29     |
| 80   | 22 | 200  |         | 132  | 126 | 242.5 | 160 | 310 | 155 | 200 | 36     |
| 100  | 24 | 220  | 19 (8x) | 156  | 146 | 262.5 | 180 | 350 | 175 | 225 | 52     |
| 125  | 26 | 250  |         | 184  | 163 | 279.5 | 210 | 400 | 200 | 255 | 71     |
| 150  | 26 | 285  | 23 (8x) | 211  | 186 | 302.5 | 240 | 480 | 240 | 290 | 96     |

| DN   | н     |       |       |       |  |  |  |  |  |
|------|-------|-------|-------|-------|--|--|--|--|--|
| [mm] | SQX   | SKD   | SKB   | SKC   |  |  |  |  |  |
| 15   | > 489 | > 564 | > 639 |       |  |  |  |  |  |
| 25   | > 489 | > 564 | > 639 |       |  |  |  |  |  |
| 40   | > 482 | > 557 | > 632 |       |  |  |  |  |  |
| 50   | > 521 | > 596 | > 671 |       |  |  |  |  |  |
| 65   |       |       |       | > 689 |  |  |  |  |  |
| 80   |       |       |       | > 701 |  |  |  |  |  |
| 100  |       |       |       | > 721 |  |  |  |  |  |
| 125  |       |       |       | > 738 |  |  |  |  |  |
| 150  |       |       |       | > 761 |  |  |  |  |  |

DN = Nominal diameter

- H = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, service, etc.
- H1 = Dimension from the pipe centre to install the actuator (upper edge)
- H2 = Valve in the "Closed" position means that the stem is fully extended

Dimensions in mm

© 1998 Siemens Building Technologies Ltd.

Replaces CE1N4452E